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Time-dependent convection motions in the form of rolls in a thin vertical fluid layer 
(Hele-Shaw cell) heated from below are investigated numerically. Perpendicular to 
the convection-roll axis the fluid is bounded by parallel adiabatic rigid sidewalls. 
Stress-free top, bottom and end boundaries are assumed. The horizontal extension 
of the convection rolls is described by the wavenumber a. Solutions for the 
time-dependent behaviour of the convective motion are presented for a range of 
wavenumbers between a = $7 and 27r. The onset of the oscillation is shifted to higher 
Rayleigh numbers with increasing wavenumber. The oscillatory Hele-Shaw 
convection is caused by an instability of the thermal boundary layer, as is evident 
from the plotted temperature field and streamlines. From the variation of the Nusselt 
number with time i t  is found that the oscillatory motion starts with a sinusoidal time 
dependence and passes into a periodic state with several frequencies as the Rayleigh 
number is increased. Quantitative and qualitative agreement with previous experi- 
mental and numerical results is found. 

1. Introduction 
In recent years investigations of convection in a fluid layer of infinite horizontal 

extent heated from below have led to a good understanding of the flow pattern. This 
system is one of the simplest hydrodynamical examples in which the transition to 
turbulence from a simple state can be studied (Clever & Busse 1974; Busse 1978). 
The evolution of turbulence occurs over several discrete transitions. Among these the 
transition to oscillatory convection represents an important state in the understanding 
of the development of turbulence. A summarizing diagram of the visually observed 
transitions in convection as a function of Rayleigh and Prandtl numbers is given by 
Krishnamurti (1970a, b ;  1973) and a slightly modified version presented by Busse 
(1978). Depending on the Prandtl number, two-dimensional convection changes into 
various forms of three-dimensional steady and unsteady forms of convection with 
increasing Rayleigh number. In  recent experiments on unsteady thermal convection 
in layers where the height becomes comparable with the width (aspect ratio A = I ) ,  
the use of laser-Doppler velocimetry or thermocouples for temperature measurements 
(Ahlers & Behringer 1978; Berge & Dubois 1979; Maurer & Libchaber 1979; Gollub 
& Benson 1980) has made it possible to obtain measurements of convection flow. By 
the use of Fourier spectra of the signals it was found that the transition from the 
steady to the chaotic time-dependent state starts with the onset of periodic 
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oscillations, followed by a quasiperiodic oscillation with 2 or 3 incommensurate 
frequencies and the possibility of phase locking. 

Another excellent example for studying the transition to turbulence theoretically 
as well as experimentally is the behaviour of the convection flow in a thin vertical 
layer with adiabatic sidewalls, the so-called Hele-Shaw cell. The peculiarity of the 
Hele-Shaw flow as opposed to the classical Rayleigh-BBnard problem is that the flow 
is always two-dimensional and independent of the Prandtl number. Free convection 
in Hele-Shaw cells has also been used to simulate thermal convection in porous media 
(Wooding 1960; Elder 1967; Horne & O’Sullivan 1974; Hartline & Lister 1977; 
Kvernvold 1979). The analogy between slow two-dimensional flow in a porous 
medium and laminar flow in a narrow slot with two parallel walls was first shown 
by Hele-Shaw (1898). The analogy is made obvious by defining an appropriate 
permeability, as Hartline & Lister (1977) have done. Kvernvold (1979) has used the 
governing equations for motion in a Hele-Shaw cell following Hartline & Lister (1977) 
in order to investigate the stability of the stationary solutions with respect to 
infinitesimal disturbances. His results show that the Hele-Shaw convection is stable 
for a much wider range of wavenumbers and Rayleigh numbers than ordinary 
porous-media convection. The geometry of the Hele-Shaw cell forces the disturbances 
to be purely two-dimensional, and thus only the Eckhaus and the oscillatory 
instabilities can exist. The onset of oscillatory convection is dependent on wavenumber 
a and Rayleigh number R. The stable motion is limited by the oscillatory instability 
from a > 0 . 4 ~ ~  and R = 38R, up to a = a, = 7~ and R = 8R, (Kvernvold 1979 and 
private communication 1980). The experimental investigation of Koster (1980) shows 
the onset of time-dependent convection a t  RIR, = 10.3 for a/a,  = 1. The theoretical 
results of Caltagirone (1975) for the comparable two-dimensional flow in porous media 
show that unicellular convection becomes unsteady for Rayleigh numbers exceeding 
RIR, = 10, while Schubert & Straus (1979) report about a value of RIR, = 8. I n  the 
case of porous media the critical Rayleigh number R, is known to be R, = 4n2 (Horton 
& Rogers 1945; Lapwood 1948). For a Hele-Shaw cell, considered as a thin vertical 
channel with an aspect ratio A $ 20 ( A  = h/d,  the ratio of channel height to channel 
width), Frick & Clever (1980) have determined the critical value R, = (47r2) 12A2. The 
analysis of time-dependent Hele-Shaw convection (Koster 1980) shows that the 
transition from the steady to  the chaotic state is preceded by the onset of periodic 
and then quasiperiodic oscillations, similar to the behaviour of convection in a thin 
horizontal fluid layer. 

The main goal of the present paper is to study the time-dependent behaviour of 
the Hele-Shaw Convection and to determine the relationship between the Nusselt 
number, the isotherms and the streamlines for several Rayleigh numbers. Since the 
mathematical analysis of steady convection rolls has been described in an earlier 
paper (Frick & Clcver 1982), only a brief discussion of the numerical techniques is 
given in $2. The numerical results are presented and discussed in $3. Some concluding 
remarks arc made in $4. 

2. Mathematical formulation of the problem 
We consider a long vertical fluid layer heated from below of height h and with 

parallel sidewalls a distance d (d 4 h)  apart. The horizontal boundaries are free. 
Constant temperahres TI and To are prescribed a t  the upper and lower boundaries 
of the layer, where T, is larger than q. The lateral walls are insulated. The size of 
the convection rolls is given by the wavenumber a. The theoretical description of 
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problem is based on the Navier-Stokes equations and the heat equation in the 
Boussinesq approximation. A complete mathematical description of the problem is 
given in Frick & Clever (1982). 

h)  it  is possible to  use a simplified 
representation for the velocity field 

In  the limit of Hele-Shaw convection (d 

v = E$ = v x O$), (1) 

where j is the unit vector in the direction of the channel width d. By introducing 
dimensionless quantities, after operating with E on the equation of motion, we obtain 
the following equations in the limit of infinite Prandtl number for + and 8: 

V2A,++a,8  = 0, ( 2 )  

(3) v20+ ~ a ,  + = -a, + a, @+a, + a, B+ a, 8, 

where 8 is the deviation from the temperature distribution of the static state. The 
Laplacians A, and V2 are defined by 

A, = a;, + a;z, 
v2 = a;% + A2 a;u + a;,. 

The dependence of the problem on the physical conditions of the fluid layer has been 
reduced to the Rayleigh numbcr R and the aspect ratio A :  

h 
d ’  

A = -  ygATh3 &=- 
VK 

where y is the coefficient of thermal expansion, g is the acceleration due to gravity, 
A T  = - is the temperature difference, v is the kinematic viscosity and K is the 
thermal diffusivity. 

As in the previous investigation (Friek & Clever 1982) we use the Galerkin 
technique to solve (2) and (3) ,  where + and 8 are expanded in terms of orthogonal 
functions. The various trial functions for + and 8 are given by Frick & Clever (1982). 
In  the case of Hele-Shaw convection caused by the parabolic flow and uniform 
temperature profile across the channel width (Frick 1981) i t  is possible to  reduce the 
number of functions in the y-direction, when the aspect ratio A is large. I n  the present 
study we use an aspect ratio A = 1000. An acceptable solution has been obtained 
when the Nusselt number changes by less than 1.5 yo as the truncation parameter N 
is increased to N + 2 .  The values of the truncation parameter chosen depend on the 
Rayleigh number and wavenumber, and are comparable with those given by 
Sohubert & Straus (1979). 

3. Discussion of results 
In  describing the numerical results for unsteady convection rolls we shall explain 

the time-dependent behaviour of the convective heat transport, isotherms and 
streamlines. For three examples of wavenumbers, a = $77 (large convection rolls), 
a = a, = 77 (rolls with a height equal to the length), and a = 277 (small rolls), the 
problem of the oscillatory convection is discussed in terms of the ratio MIR, of the 
actual to the critical Rayleigh number. 

In discussing the time-dependent behaviour of the Helc-Shaw convection for 
several wavenumbers we first consider rolls with a = $77. For this wavenumher the 
convection is steady up to a Rayleigh number RIR, = 6. With increasing I{ the flow 
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FIGURE 1. Nusselt-number variations with time t at  several values of R/R, for a = $7. 
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FIQURE 2. Time dependence of the isotherms and streamlines at R / R ,  = 8 for a = in. 

shows an oscillatory behaviour and the heat transport becomes time-dependent. 
Figure 1 illustrates how the Nusselt-number fluctuations with time change for several 
Rayleigh numbers. The motion is typically time-periodic with a period 7. With 
increasing RIR, the period 7 decreases, while the amplitudes of the Nu-fluctuations 
become larger. The main source of unsteady flow can be seen in figure 2 in which a 
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FIGURE 3. Nusselt number as a function of time at several Rayleigh numbers for CL = n 

time series of isotherms and streamlines is shown at the vertical centreplane of the 
channel. Wavy perturbations occur in the temperature boundary layer in a region 
of maximized temperature gradient, for example near the lower boundary close to 
the position of the downward convection, and move towards the zone of upward flow. 
This process can be explained as an instability of the boundary layer a t  the lower 
and upper sides. Because the local temperature gradient exceeds a critical value, small 
secondary convection eddies develop in this layer. The movement of the wavy 
perturbations results from a superposition of the basic convection roll with thew 
secondary eddies. These perturbations decrease the heat transport locally and this 
effect intensifies with increasing Rayleigh number. The time dependence of the 
temperature distribution T* versus the height of the fluid layer (z-direction) in the 
centre ( 1 )  and in the zones of upflow (3) and downflow (2) of the convection cells 
demonstrates these local modifications in figure 2.  As seen in figure 2 parcels of hot 
fluid are advected along the lower boundary towards the region of ascending motion. 
I n  the second row of pictures the two parcels arriving a t  centre from both sides 
combine and form a hot blob separating from the boundary. At the same time the 
Nusselt number based on the average temperature gradient a t  the boundary 
decreases. An equivalent process is to observe a t  the upper side. Owing to the 
relatively large convection rolls (a = in) i t  is possible to have two wavy perturbations 
in the region of one convection roll. This is clearly seen in the contour plots of the 
isotherms and streamlines for Nu,,, in figure 2. In  the case a = in the wavy 
perturbations need a time of 2 periods r to evolve and to disappear. 
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FIGURE 4. Nusselt-number fluctuations with time at RIR, = 20 and RIR, = 23 for a = 271 

With increasing wavenumber thc onset of the oscillation is shifted to higher values 
of RIR,. For a = n the time-dependent convection begins a t  KlR, > 9 and shows 
a periodic behaviour with a single frequency up to RIB, = 11 (figure 3) .  As in the 
case of a = the period r decreases, while the amplitudes of the Nusselt fluctuations 
become larger. The unsteady behaviour is attributed to a movement of one wavy 
perturbation along the horizontal sides, as shown theoretically by Caltagirone (1975) 
and experimentally by Koster (1980). At KIR, = 15 the motion becomes periodic 
with several frequencies. The Nusselt-number fluctuations show a number of different 
large maxima and minima, which are periodic in time of order rl. Two maxima are 
remarkable, Nu = 6.95 and Nu = 6.8,  a time r2 apart, where r2 is a rational fraction 

A new kind of unsteady behaviour is found in the case of small convection rolls 
with a wavenumber a: = 2n. I n  the range of Rayleigh numbers investigated, 
18 < RIR, < 23, two types of fluid motion have been found. The first type has a 
similar flow character to the case a < 7 ~ ;  we shall refer to this as type A. The other 
type of flow (type B) consists of oscillatory motion that is symmetric with respect 
to the original centre of the roll. This motion can be described as an oscillation of 
a diagonal roll with two secondary rolls in the opposite corners. Figure 4 illustrates 
how the Nu-fluctuations change with time from RlR, = 20 up to  RIR, = 23 for both 
types of motion. The time dependence of Nu is plotted for type A in the left part 
of each diagram and for type B in the right part. First we shall discuss the time 
dependence of type-A convection. 

At the onset of convection (RIR, > 18) the motion is typically time-dependent with 
a single frequency, and with increasing Rayleigh number (KIR, = 23) the Nu- 
fluctuations show a transition to a periodic behaviour with several frequencies. A 
characteristic property of this form of convection (at RlR, = 20)  is the rise of one 
small blob of hot fluid from the lower hot layer into the colder region before the 
minimum of the Nusselt number is reached. The time-dependent behaviour of the 
convection motion a t  RlR, = 23 can be observed in figure 5 ,  in which a time series 
of isotherms and streamlines is shown. It is remarkable that two fluid blobs emerge 
from the boundary layer even though the basic wavelength of the rolls is relatively 
small. In figure 5 wavy perturbations of two different strengths (indicated by I and 

of 7 1 .  
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FIQURE 5 .  Isotherms and streamlines pattern of type-A flow a t  RIR, = 23 and a = 277. 

11) give rise to  warm fluid blobs of different size. The oscillatory peaks in the Nusselt 
number in figure 4 correspond to this process. 

The other fundamental time-dependent behaviour-is that  of type B. A characteristic 
feature of this flow is the existence of large fluctuations of the Nusselt number 
(figure 4) with varying slopes. In  figure 6 the patterns of the isotherms and streamlines 
are shown in connection with the fluctuations in time of the Nusselt number at 
R / R c  = 23. The minimum of the heat transport (1) develops when a large diagonal 
roll exists with two very small rolls in the opposite corners. As time goes on, the corner 
cells increase, and the basic roll is squeezed in the middle. At the same time the 
Nusselt number increases. The maximum of Nusselt number is reached when the 
diagonal and the corner roll have about the same width near the horizontal 
boundaries (2) .  With increasing corner-roll size the basic roll is divided into two parts 
and results in four cells (4). Then the original rolls begin to increase in size and form 
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FICGRE 6. Time variation of isotherms and streamlines in comparison with the Nusselt-number 
fluctuations of type-B flow at RIR, = 23 and 01 = 271. 

a new roll in the opposite diagonal (5). This process forces a decrease in the Nusselt 
number until a new squeezing of the diagonal roll occurs (5) and the same 
time-dependent process repeats itself. The original position of the diagonal roll (1) 
is thus found again after a time of two periods of the Nusselt-number variation. 

After having considered the characteristic behaviour of flows of both type A and 
B, we shall now discuss the calculated solutions in relation to the types of flow that 
have been observed experimentally. The numerical investigations have shown that 
both types of solution may develop for the same value of R .  Whether type-A or tyyc-B 
solutions are obtained depends on the numerical procedure used. Upon increasing the 
Rayleigh number above the steady state for RIB, = 17 and a = 27r, oscillatory 
solutions of type A have been found when a truncation parameter large enough to 
obtain converged solutions was used. The optical investigations of Koster (1980) for 
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FIGURE 7. Comparison of temperature-field sections with experimental measurements by Koster 
(1980), demonstrating instability of the boundary layer at the bottom of a Hele-Shaw cell. 
(Experiment: a = 8.3, theory: a = 2n.) 

A 
IS i 

l A  
Eckhaus 
instability 

i i i s t a b y ,  
/ Oscillatory 

,/ instability 

I I I I I 

0 1 2 3 4 5 
a/a, 

FIGURE 8. Stability diagram of Hele-Shaw convection rolls. 

the time-dependent behaviour of Hele-Shaw convection also show this flow type for 
large wavenumbers. Experimental and theoretical characteristic temperature fields 
of type-A flow are shown in figure 7. From these sections the movement of the 
previously discussed wavy perturbations is easy to recognize in the boundary layer. 

Time-dependent flow behaviour of type B, consisting of an oscillatory motion of 
a diagonal roll and two secondary rolls, has been found for calculations starting with 
a strongly reduced truncation parameter. When this unconverged solution was used 
as the initial solution for calculations with high truncation parameter, the result was 
a numerically converged solution of type B. Thus converged solutions of both types 
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A and 13 can be generated depending on the initial conditions. When the Rayleigh 
number is increased in steps of A(R/R,)  = 1 while employing a high truncation 
parameter, the solution of type B continues to be obtained. Large jumps in the 
Rayleighnumber(aboutA(R/R,) = 3) causeachangeinthetime-dependent behaviour 
and lead to a solution of type A. Thus flow of type B tends to be unstable to 
sufficiently large disturbances. Oscillatory convection of type B has been experi- 
ment,ally observed (Putin & Tkacheva 1979; Koster 1980) in Hele-Shaw finite boxes 
of small aspect ratio A* for A* = 2 and A* = 3.5 (A* = heightllength). 

A question of fundamental interest is the stability of the steady flow. The 
theoretical investigation of the stability of the two-dimensional Hele-Shaw convection 
has been made by Kvernvold (1979 and private communication 1980). His results 
are given in figure 8. The different states are distinguished by the ratios RIR, and 
ala,. The boundaries for onset of convection and for Eckhaus and oscillatory 
instabilities are marked by dash-dotted, solid, and dashed lines respectively. Also 
shown in figure 8 are the results for the onset of time-dependent convection (circles 
are for the experimental work of Koster (1980); triangles indicate the numerical 
results of this paper). Beside the eases a = in, a = n and a = 2n, already discussed, 
additional wavenumbers have been investigated so that the boundary of the 
oscillatory instability can be more accurately determined. Time-dependent calcula- 
tions for smaller values, such as a = in and R/R, = 6, do not yield oscillatory 
solutions because the initially large-wavelength rolls disintegrate into smaller rolls, 
as indicated by asterisks and the arrow in figure 8. 

4. Conclusion 
The Galerkin method has been applied to the problem of time-dependent convective 

motion in a Hele-Shaw cell. The numerical results agree both quantitatively and 
qualitatively with the results of the experiments of Koster (1980). The oscillatory 
convection is dependent on the Rayleigh number and the wavenumber. The Rayleigh 
number for the onset of oscillations increases to higher values with increasing 
wavenumber. 

The phenomena of oscillatory Hele-Shaw convection have been attributed to an 
instability of the thermal boundary layer as shown by the isotherm pattern (Koster 
1980). A similar conclusion is reached by theoretical considerations following Howard 
(1964) and Busse (1978). The transition from steady to unsteady convection in a 
Hele-Shaw cell is comparable to the onset of bimodal convection for the BQnard case 
(a thin horizontal fluid layer) for infinite Prandtl number. The origin of the transition 
to  bimodal convection also lies in the instability of the thermal boundary layer (Busse 
1978). But in the BBnard case secondary rolls develop perpendicular to the main roll 
in the boundary layer and the result is a three-dimensional motion. I n  contrast with 
this, the time-dependent Hele-Shaw convection is caused by the advection of the 
secondary eddies by the basic roll motion. 

The pattern of oscillatory Hele-Shaw convection has been visualized by the time 
dependence of isotherms, streamlines and heat transport. I n  agreement with the 
experimental evidence, the time-dependent motion starts as a sinusoidal oscillation 
and passes into a periodic state with several frequencies as the Rayleigh number 
increases. At the same time, the period decreases, while the amplitudes of the 
Nusselt-number fluctuations increase. The computational results presented here 
complement the optical investigation of Koster (1980) and the numerical studies of 
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Caltagirone (1975) and Schubert & Straus (1979). The oscillatory stability boundary 
in the Hele-Shaw stability diagram given by Kvernvold (1979 and private commu- 
nication 1980) has been confirmed for wavenumbers a=$r and extended up to 
a = 277. Although a transition to quasiperiodic and aperiodic behaviour is likely to 
occur a t  higher Rayleigh numbers, computational expenses have so far prevented us 
from investigating those regions. 

The authors wish to  thank Prof. F. H. Busse and Dr R. M. Clever for many helpful 
discussions and for their assistance in preparing the manuscript. This work was 
supported by the Deutsche Forschungsgemcinschaft. 
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